Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Four point charges $+ 1\mu C, + 1 \mu C, – 1 \mu C$ and $– 1 \mu C$ are placed at the corners A, B, C and D of a square of each side 0.1 m (i) Calculate electric potential at the centre O of the square (ii) If E is middle point of BC, what is work done in carrying an electron from O to E?

Can you answer this question?

1 Answer

0 votes
In figure AB = BC = CD = DA = a = 0.1 m.
$BD=AC=\sqrt{a^2+a^2}=a \sqrt 2$
$OA=OC=OB=OD=\large\frac{1}{2} $$ a \sqrt 2=\large\frac{a}{\sqrt 2}$
Potential at O,$V_0 = \large\frac{1}{4 \pi \in_0} \times \bigg[ \large\frac{1 \times 10^{-6}}{OA}+\frac{1 \times 10^{-6}}{OB}-\frac{1 \times 10^{-6}}{OC}-\frac{1 \times 10^{-6}}{OD} \bigg]$
$\qquad =\large\frac{10^{-6}}{4 \pi \in_0} \bigg[ \large\frac{1}{a/ \sqrt {2}}+\frac{1}{a/ \sqrt {2}}-\frac{1}{a/ \sqrt {2}}-\frac{1}{a/ \sqrt {2}}\bigg]=0$
Now, $BE=CE=a/2$
Again $AE=DE= \sqrt {DC^2+CE^2}$
$\qquad= \sqrt {a^2+(a/2)^2}$
$\qquad= \sqrt {\large\frac{5a^2}{4} }$
$\qquad= \sqrt {\large\frac{a \sqrt 5}{2}}$
Potential at E,$V_E = \large\frac{1}{4 \pi \in_0} \times \bigg[ \large\frac{1 \times 10^{-6}}{AE}+\frac{1 \times 10^{-6}}{BE}-\frac{1 \times 10^{-6}}{CE}-\frac{1 \times 10^{-6}}{DE} \bigg]$
$\qquad= \large\frac{10^{-6}}{4 \pi \in_0} \bigg[ \large\frac{2}{a \sqrt 5} +\frac{2}{a} -\frac{2}{a} -\frac{2}{a \sqrt 5}\bigg]=0$
Work done in carrying an electron of charge (– e) from O to E.
$W= -e [V_E -V_o]=-e [0-0]=zero$
answered Jun 7, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App