Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A system consists of two conducting concentric spheres, with the inner sphere of radius ‘a’ carrying a positive charge q. What charge q has to be deposited on the outer sphere of radius ‘b’ to reduce the potential of the inner sphere to zero?

Can you answer this question?

1 Answer

0 votes
Potential of the inner sphere of charge Q is due to its own charge and due to the charge q on the outer sphere.
Potential due to charge Q at the inner surface =$\large\frac{Q}{4 \pi \in_0 a}$
Potential due to charge q (present on the outer sphere) at the inner sphere $= \large\frac{q}{4 \pi \in_0 b}$
Net potential on the inner sphere $=\bigg( \large\frac{Q}{4 \pi \in_0 a} +\frac{q}{4 \pi \in_0 b}\bigg)$
To make the net potential zero
$=\bigg( \large\frac{Q}{4 \pi \in_0 a} +\frac{q}{4 \pi \in_0 b}\bigg)$$=0$
$=> q=-Q \large\frac{b}{a}$
answered Jun 7, 2014 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App