logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

A binary operation * on the set (0,1,2,3,4,5} is defined as : $ f(x) = \left\{ \begin{array}{l l}a+b, & \quad if { a+b < 6} \\ a+b-6, & \quad if { a+b \geq 6} \end{array} \right. $ Show that zero is the identity for this operation and each element 'a' of the set is invertible with 6-a, being the inverse of 'a'.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • An element $e \in N $ is an identify element for operation * if $a*e=e*a$ for all $a \in N$
  • The element $a \in X$ is invertible if there exist $b \in X$ such that $a*b=e=b*a$
Step 1:
Given the set $X=\{0,1,2,3,4,5\}$ where the binary operation $\ast$ is defined by $a * b= \left\{ \begin{array}{1 1} a+b & \quad if\;a+b < 6\\ a+b-6 & \quad if a+b \geq 6 \end{array} \right. $
An element $e \in N $ is an identify element for operation * if $a*e=e*a$ for all $a \in N$
To check if zero is the identity, we see that $a*0=a+0=a \qquad for\;a \in x$ and also $0*a=0+a=a \qquad for \;a \in x$
Given $a \in X, \qquad a+0 < 6\;$ and also $\;0+a < 6$
$\Rightarrow 0$ is the identify element for the given given operation
Step 2:
The element $a \in X$ is invertible if there exist $b \in X$ such that $a*b=e=b*a$
In this case, $e=0 \rightarrow a*b=0=b*a$.
$\Rightarrow a*b = \left\{ \begin{array}{1 1} a+b=0=b+a & \quad if\;a+b < 6\\ a+b-6=0=b+a-6 & \quad a+b \geq 6 \end{array} \right. $
ie $a=-b \;or\; b=6-a$
but since $a,b \in X=\{0,1,2,3,4,5\}$, $\;a \neq -b$
Hence $b=6-a\;$ is the inverse of $a$, i.e., $a^{-1}=6-a, \;\forall a \in \{1,2,3,4,5\}$
answered Nov 12, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...