Want to ask us a question? Click here
Browse Questions
 Ad
0 votes

# Using vector method, find the angle between two diagonals of a cube?

Can you answer this question?

## 1 Answer

0 votes
Toolbox:
• If $A(x_1,y_1,z_1)\:\:and\:\:B(x_2,y_2,z_2)$ are two points in space then $\overrightarrow {AB}=(x_2-x_1)\hat i+(y_2-y_1)\hat j+(z_2-z_1)\hat k$
• Angle between any two vectors $\overrightarrow a\:and\:\overrightarrow b$ $= cos^{-1}\bigg(\frac{\overrightarrow a.\overrightarrow b}{|\overrightarrow a||\overrightarrow b|}\bigg)$
Let OABCDEFG be a cube with vertices as below
O(0,0,0), A(a,0,0), B(a,a,0), C(0,a,0),
D(0,a,a), E(0,0,a), F(a,0,a) and G(a,a,a)
There are four diagonals OG,CF,AD and BE for the cube.
Let us consider any two say OG and AD
We know that if $A(x_1,y_1,z_1)\:\:and\:\:B(x_2,y_2,z_2)$ are two points in space then $\overrightarrow {AB}=(x_2-x_1)\hat i+(y_2-y_1)\hat j+(z_2-z_1)\hat k$
$\Rightarrow\:\overrightarrow {OG}=(a-0)\hat i+(a-0)\hat j+(a-0)\hat k=a\hat i+a\hat j+a\hat k$ and
$\overrightarrow {AD}=(0-a)\hat i+(a-0)\hat j+(a-0)\hat k=-a\hat i+a\hat j+a\hat k$
$|\overrightarrow {OG}|=\sqrt{a^2+a^2+a^2}=\sqrt3a$
$|\overrightarrow {AD}|=\sqrt{(-a)^2+a^2+a^2}=\sqrt3a$
$\overrightarrow {OG}.\overrightarrow {AD}=-a^2+a^2+a^2=a^2$
We know that angle between any two vectors $\overrightarrow a\:and\:\overrightarrow b$ $= cos^{-1}\bigg(\frac{\overrightarrow a.\overrightarrow b}{|\overrightarrow a||\overrightarrow b|}\bigg)$
$\Rightarrow\:$Angle between the two diagonals $\overrightarrow {OG}$ and $\overrightarrow {AD}$=
$cos^{-1}\bigg(\frac{\overrightarrow {OG}.\overrightarrow {AD}}{|\overrightarrow {OG}||\overrightarrow {AD}|}\bigg)$
$=cos^{-1}\bigg(\frac{a^2}{\sqrt3a.\sqrt3a}\bigg)=cos^{-1}\frac{a^2}{3a^2}$
$=\large\:cos^{-1}\frac{1}{3}$
Hence proved.
answered Apr 22, 2013
edited Apr 24, 2013

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer