Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Prove that the perpendicular bisectors of a triangle are concurrent.

Can you answer this question?

1 Answer

0 votes
  • To prove that the $\perp$ bisectors are concurrent, prove that the third bisector passing through the intersecting point of other two $\perp$ bisectors is also $\perp$ to its corresponding side.
  • $\overrightarrow {AB}=\overrightarrow {OB}-\overrightarrow {OA}$
  • If $\overrightarrow a.\overrightarrow b=0\:then \:\overrightarrow a\:is\:\perp\:to\:\overrightarrow b$
  • Section formula: If D is mid point of AB, then $\overrightarrow {OD}=\frac{\overrightarrow {OA}+\overrightarrow {OB}}{2}$
Let ABC be a triangle. D,E F be mid points of BC,AC and AB respectively
Let O (origin) be the point of intersection of the $\perp$ bisectors
OD and OE
Let $\overrightarrow {OA}=\overrightarrow a,\:\overrightarrow {OB}=\overrightarrow b\:and\:\overrightarrow {OC}=\overrightarrow c$
Since D is mid point of BC, we know from section formula,
$\overrightarrow {OD}=\frac{\overrightarrow {OB}+\overrightarrow {OC}}{2}=\frac{\overrightarrow b+\overrightarrow c}{2}$,
E is mid point of AC
$\Rightarrow\:\overrightarrow {OE}=\frac{\overrightarrow a+\overrightarrow c}{2}$ and
$\overrightarrow {OF}=\frac{\overrightarrow a+\overrightarrow b}{2}$
But $\overrightarrow {OD} $ is $\perp$ bisector to $\overrightarrow {BC}$
$\Rightarrow \overrightarrow {OD}.\overrightarrow {BC}=0$
$\Rightarrow\:\frac{\overrightarrow b+\overrightarrow c}{2}.(\overrightarrow c-\overrightarrow b)=0$
$\Rightarrow\:|\overrightarrow c|^2-|\overrightarrow b|^2=0$............(i)
Similarly $\overrightarrow {OE} $ is $\perp$ bisector to $\overrightarrow {AC}$
$\Rightarrow \overrightarrow {OE}.\overrightarrow {AC}=0$
$\Rightarrow\:\frac{\overrightarrow c+\overrightarrow a}{2}.(\overrightarrow c-\overrightarrow a)=0$
$\Rightarrow\:|\overrightarrow c|^2-|\overrightarrow a|^2=0$................(ii)
Subtrancting (i) - (ii) we get
$\Rightarrow\:(|\overrightarrow c|^2-|\overrightarrow b|^2)-(|\overrightarrow c|^2-|\overrightarrow a|^2)=0$
$\Rightarrow |\overrightarrow a|^2-|\overrightarrow b|^2=0$...........(iii)
To prove that the $\perp$ bisectors are concurrent, we have to prove
that the third bisector $\overrightarrow {OF}$ is $\perp$ to $\overrightarrow {AB}$
That is we have to prove that $\overrightarrow {OF}.\overrightarrow {AB}=0$
$\Rightarrow \overrightarrow {OF}.\overrightarrow {AB}=\frac{\overrightarrow a+\overrightarrow b }{2}.(\overrightarrow b-\overrightarrow a)$
$=\frac{|\overrightarrow b|^2-|\overrightarrow a|^2}{2}=0$ from (iii)
$\Rightarrow\:\overrightarrow {OF}.\overrightarrow {AB}=0$
$\Rightarrow\:\overrightarrow {OF}$ is $\perp$ to $\overrightarrow {AB}$
$\Rightarrow\:\overrightarrow {OF}$ is also a perpendicular bisector.
$\Rightarrow$ All the three $\perp$ bisectors are concurrent.
Hence proved.
answered Apr 23, 2013 by rvidyagovindarajan_1
edited Apr 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App