Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Using vector method, prove that if two medians of a triangle are equal, then it is an isosceles.

Can you answer this question?

1 Answer

0 votes
  • Median is the segment joining mid point of any side with its opposite vertex.
  • Section formula: If D is mid point of BC then, $\overrightarrow {OD}=\frac{\overrightarrow {OB}+\overrightarrow {OC}}{2}$
  • $\overrightarrow {AB}=\overrightarrow {OB}-\overrightarrow {OA}$
  • A triangle is isosceles if two sides are equal.
  • $|\overrightarrow a+\overrightarrow b|^2=|\overrightarrow a|^2+|\overrightarrow b|^2+2\overrightarrow a.\overrightarrow b$
  • $|\overrightarrow a-\overrightarrow b|^2=|\overrightarrow a|^2+|\overrightarrow b|^2-2\overrightarrow a.\overrightarrow b$
Let ABC be triangle where
D is mid point of BC, E is mid point of AC and F is mid point of AB
Let $\overrightarrow {OA}=\overrightarrow a,\:\:\overrightarrow {OB}=\overrightarrow b\:\:and\:\:\overrightarrow {OC}=\overrightarrow c$
be the position vectors of the points A,B and C respectively.
$\Rightarrow $ the sides AB,BC and AC are given by
$\overrightarrow {AB}=\overrightarrow b-\overrightarrow a,\:\:\overrightarrow {BC}=\overrightarrow c-\overrightarrow b\:and\:\overrightarrow {AC}=\overrightarrow c-\overrightarrow a$
From section formula we can say that $\overrightarrow {OD}=\frac{\overrightarrow b+\overrightarrow c}{2}$,
$\overrightarrow {OE}=\frac{\overrightarrow a+\overrightarrow c}{2}$ and $\overrightarrow {OF}=\frac{\overrightarrow a+\overrightarrow b}{2}$
AD, BE and CF are the medians.
According to the question it is given that two medians are equal.
Let the two equal medians be $\overrightarrow {AD}$ and $\overrightarrow {BE}$
$\Rightarrow |\overrightarrow {AD}|=|\overrightarrow {BE}|$
$\Rightarrow |\overrightarrow {AD}|^2=|\overrightarrow {BE}|^2$
$\Rightarrow\:|\overrightarrow {OD}-\overrightarrow {OA}|^2=|\overrightarrow {OE}-\overrightarrow {OB}|^2$
$\Rightarrow |\frac{\overrightarrow b+\overrightarrow c}{2}-\overrightarrow a|^2=|\frac{\overrightarrow a+\overrightarrow c}{2}-\overrightarrow b|^2$
$\Rightarrow\:|\frac{\overrightarrow b+\overrightarrow c}{2}|^2+|\overrightarrow a|^2-2(\frac{\overrightarrow b+\overrightarrow c}{2}).\overrightarrow a$
$=|\frac{\overrightarrow a+\overrightarrow c}{2}|^2+|\overrightarrow b|^2-2(\frac{\overrightarrow a+\overrightarrow c}{2}).\overrightarrow b$
$\Rightarrow\:\frac{|\overrightarrow b|^2}{4}+\frac{|\overrightarrow c|^2}{4}+\frac{\overrightarrow b.\overrightarrow c}{2}+|\overrightarrow a|^2-\overrightarrow b.\overrightarrow a-\overrightarrow c.\overrightarrow a$
$=\frac{|\overrightarrow a|^2}{4}+\frac{|\overrightarrow c|^2}{4}+\frac{\overrightarrow a.\overrightarrow c}{2}+|\overrightarrow b|^2-\overrightarrow a.\overrightarrow b-\overrightarrow c.\overrightarrow b$
$\Rightarrow \frac{3}{4}|\overrightarrow a|^2+\frac{3}{2}\overrightarrow b.\overrightarrow c=\frac{3}{4}|\overrightarrow b|^2+\frac{3}{2}\overrightarrow a.\overrightarrow c$
$\Rightarrow |\overrightarrow a|^2-2\overrightarrow a.\overrightarrow c=|\overrightarrow b|^2-2\overrightarrow b.\overrightarrow c$
Adding $|\overrightarrow c|^2 $ on both sides we get
$\Rightarrow |\overrightarrow a|^2-2\overrightarrow a.\overrightarrow c+|\overrightarrow c|^2=|\overrightarrow b|^2-2\overrightarrow b.\overrightarrow c+|\overrightarrow c|^2$
$\Rightarrow |\overrightarrow a-\overrightarrow c|^2=|\overrightarrow b-\overrightarrow c|^2$
$\Rightarrow \:|\overrightarrow {CA}|=|\overrightarrow {CB}|$
$\Rightarrow $ the triangle is isosceles.
answered Apr 26, 2013 by rvidyagovindarajan_1
edited Apr 28, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App