Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

$ (i) A = \begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}$ then verify that $A'A = I$

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com
Can you answer this question?

1 Answer

0 votes


  • If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B: $\begin{bmatrix}AB\end{bmatrix}_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + A_{i,3}B_{3,j} ... A_{i,n}B_{n,j}$
  • An identity matrix or unit matrix of size n is then n*n square matrix with ones on the main diagonal and zeros elsewhere. An identity matrix of order 2, $I_{2}= \begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}$
  • $sin^2\alpha+cos^2\alpha$=1
$(i)A= \begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}$
$A' = \begin{bmatrix} cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}$
$AA' = \begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}\begin{bmatrix} cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}$
$\;\;\;= \begin{bmatrix} sin^2\alpha+cos^2\alpha & cos\alpha sin\alpha-sin\alpha cos\alpha \\ sin\alpha cos\alpha-cos\alpha sin\alpha & cos^2\alpha+sin^2\alpha \end{bmatrix}$
We know that $cos^2\alpha+sin^2\alpha=1$ and $sin^2\alpha+cos^2\alpha$=1
$\;\;\;=\begin{bmatrix}1 &0\\0& 1\end{bmatrix}=I$
Hence we get the value as $2\times 2$ matrix which is equal to identity matrix.
Hence LHS=RHS.


answered Mar 5, 2013 by sharmaaparna1
edited Mar 13, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App