logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Find the transpose of each of the following matrices : $$ \text{ (i) } \begin{bmatrix} 5 \\ \tfrac{1}{2} \\ -1 \end{bmatrix} \qquad \qquad (ii) \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \qquad \qquad (iii)\begin{bmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{bmatrix} $$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If A =$[a_{ij}]$ be an matrix,then the matrix obtained by interchanging the rows and column of A is called the transpose of A.
  • Transpose of the matrix A is denoted by A' or $A^T.$
$(i)\begin{bmatrix}5\\\frac{1}{2}\\-1\end{bmatrix}\Rightarrow $As per the formula interchange the rows into column to get the transpose.
 
$\Rightarrow \begin{bmatrix}5\\\frac{1}{2}\\-1\end{bmatrix}=A.$
 
$A'=\begin{bmatrix}5 & \frac{1}{2} &-1\end{bmatrix}$
 
$(ii)\begin{bmatrix}1 &-1\\2 & 3\end{bmatrix}$
 
Let A=$\begin{bmatrix}1 &-1\\2 & 3\end{bmatrix}$
 
$A'=\begin{bmatrix}1 &2\\-1 & 3\end{bmatrix}$
 
$(iii)\begin{bmatrix}-1 &5 & 6\\\sqrt 3 & 5 & 6\\2 & 3 &-1\end{bmatrix}$
 
Let $ A=\begin{bmatrix}-1 &5 & 6\\\sqrt 3 & 5 & 6\\2 & 3 &-1\end{bmatrix}$
 
$A'=\begin{bmatrix}-1 &\sqrt 3 & 2\\5 & 5 & 3\\6 & 6 &-1\end{bmatrix}$

 

answered Feb 14, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...