Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the equation of the plane passing through the line of intersection of the planes $\overrightarrow r. (\hat i + \hat j + \hat k) = 1 \: and \: \overrightarrow r. (2\hat i + 3\hat j - \hat k) +4 = 0$ and parallel to x - axis.

Can you answer this question?

1 Answer

0 votes
  • Vector equation of a plane passing through the intersection of two planes is $\overrightarrow r.(\overrightarrow n_1+\lambda\overrightarrow n_2)=d_1+\lambda d_2$
  • If two planes are perpendicular,$a_1a_2+b_1b_2+c_1c_2=0$
Step 1:
Let the given planes be
$\overrightarrow r.(2\hat i+3\hat j-\hat k)+4=0$
$\overrightarrow r.(\hat i+\hat j+\hat k)-1=0$
Therefore equation of the plane passing through the line of intersection of these planes.
$\overrightarrow r.(2\hat i+3\hat j-\hat k)+\lambda[\overrightarrow r.(\hat i+\hat j+\hat k)-1]=0$
Expanding this we get
$\overrightarrow r.[(2+\lambda)\hat i+(3+\lambda)\hat j+(-1+\lambda)\hat k]+4-\lambda=0$------(1)
Step 2:
t is given the plane is parallel to the plane (1)
Its normal $\perp$ to $x$-axis.
Therefore the direction ratios of normal are $(2+\lambda,3+\lambda,-1+\lambda)$
The direction ratios of $x$-axis are $(1,0,0)$.
Normal of the plane and $x$-axis are $\perp$
Step 3:
Substituting for $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$
$(2+\lambda)\times 1+(3+\lambda)\times 0+(-1+\lambda)\times 0=0$
On simplifying we get
Therefore $\lambda=-2$
Step 4:
Put $\lambda=-2$ in equ(1)
$\overrightarrow r.[(2-2)\hat i+(3-2)\hat j+(-1-2)\hat k]+4+2=0$
Hence equation of required plane is $\overrightarrow r .(\hat j-3\hat k)+6=0$
answered Nov 14, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App