Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int_0^{\large\frac{\pi}{4}} \log(1+\tan x)dx $

Can you answer this question?

1 Answer

0 votes
  • $ \int \limits_a^b f(x)dx=F(b)-F(a)$
  • $\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x)dx$
  • $\tan(A+B)=\large\frac{\tan A+\tan B}{1-\tan A \tan B}$
  • $\tan (A-B)=\large\frac{\tan A-\tan B}{1+\tan A \tan B}$
Step 1:
I=$\int\limits_0^\frac{\pi}{4} \log (1+\tan x)\;dx-----(1)$
By using the property $\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x)dx$
I=$\int\limits_0^\frac{\pi}{4} \log [(1+\tan (\large\frac{\pi}{4}$$-x)]\;dx$
Using $\tan (A-B)=\large\frac{\tan A-\tan B}{1+\tan A \tan B}$
$I=\int \limits_0^{\frac{\pi}{4}} \log \bigg[1+\large\frac{\tan {\pi}{4}-\tan x}{1+\tan \frac{\pi}{4}.\tan x}\bigg]dx $
$I=\int \limits_0^{\frac{\pi}{4}} \log \bigg[1+\large\frac{1-\tan x}{1+\tan x}\bigg]dx $
$=\int \limits_0^{\frac{\pi}{4}} \log \large\frac{2}{(1+\tan x)}$$dx $
$\log(\frac{a}{b})=\log a-\log b$ similarly
$I=\int \limits_0^{\frac{\pi}{4}}\log 2dx-\int \limits_0^{\frac{\pi}{4}}\log(1+\tan x)dx$
$=\int \limits_0^{\frac{\pi}{4}} \log 2.dx-I$
Step 2:
Therefore $2I=\int \limits_0^{\frac{\pi}{4}} \log 2.dx$
On integrating we get,
$ 2I=[\log 2 (x)]_0^{\large\frac{\pi}{4}}$
Applying limits we get,
$2I=\log 2. (\pi/4)$
$=>2I=\large\frac{\pi}{4}$$\log 2$
Therefore $ I=\large\frac{\pi}{8}$$\log 2$
answered Nov 14, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App