Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Using matrices, solve the following system of equations : $x+2y-3z=-4, 2x+3y+2z=2 \: and \: 3x-3y-4z=11 $

Can you answer this question?

1 Answer

0 votes
  • Minor of an element $a_{ij}$ of a determinant is the determinant obtained by deleting it $i^{th}$ row and $j^{th}$ column in which $a_{ij}$ lies.Minor of an element $a_{ij}$ is denoted by $M_{ij}$
  • Cofactor of an element $a_{ij}$ denoted by $A_{ij}$ is defined by $A_{ij}=(-1)^{i+j}M_{ij}$,where $M_{ij}$ is minor of $a_{ij}$
Step 1:
Given :
This can be written in the matrix form as
$\begin{bmatrix}1 & 2& 3\\2 & 3& 2\\3 &-3 &-4\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-4\\2\\11\end{bmatrix}$
(i.e) $Ax=B$
Here $A=\begin{bmatrix}1 &2&-3\\2 &3&2\\3 &-3 &-4\end{bmatrix}$
$\mid A\mid=\begin{bmatrix}1 & 2 & -3\\2 & 3&2\\3 &-3&-4\end{bmatrix}$
$\qquad=-6+28+45=67\neq 0$
Hence $A$ is invertible.
Step 2:
Now let us find the adj of A
$C_{11}=(-1)^{1+1}\begin{vmatrix}3 &2\\-3 & -4\end{vmatrix}=-6$
$C_{12}=(-1)^{1+2}\begin{vmatrix}2 &2\\3 & -4\end{vmatrix}=14$
$C_{13}=(-1)^{1+3}\begin{vmatrix}2&3\\3 & -3\end{vmatrix}=-15$
$C_{21}=(-1)^{2+1}\begin{vmatrix}2 &-3\\-3 & -4\end{vmatrix}=17$
$C_{22}=(-1)^{2+2}\begin{vmatrix}1 &-3\\3 & -4\end{vmatrix}=5$
$C_{32}=(-1)^{3+2}\begin{vmatrix}1 &-3\\2 & 2\end{vmatrix}=-8$
$C_{33}=(-1)^{3+3}\begin{vmatrix}1 &2\\2 & 3\end{vmatrix}=-1$
Step 3:
Hence adj of $A$ is
$A^{-1}=\large\frac{1}{\mid A\mid}$$adj A$
Step 4:
$\Rightarrow \large\frac{1}{67}$$\begin{bmatrix}24+34+143\\-56+10-88\\60+18-11\end{bmatrix}$
$\Rightarrow \begin{bmatrix}3\\2\\1\end{bmatrix}$
Hence $x=3,y=2$ and $z=1$ are the required solution.
answered Nov 14, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App