Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Prove that : $\large \frac{d}{dx} \bigg[ \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \sin^{-1}\bigg( \frac{x}{a} \bigg) \bigg] = \sqrt{a^2-x^2} $

Can you answer this question?

1 Answer

0 votes
  • $\int udv=uv-\int vdu$
Step 1:
Given :
$\large \frac{d}{dx} \bigg[ \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \sin^{-1}\bigg( \frac{x}{a} \bigg) \bigg] = \sqrt{a^2-x^2} $
(i.e) $\int \sqrt{(a^2-x^2)dx}=\large\frac{x}{2}$$\sqrt{a^2-x^2}+\large\frac{a^2}{2}$$\sin^{-1}\big(\large\frac{x}{a}\big)$
To prove the above statement let,
This is of the form $\int udv=uv-\int vdu$
Let $u=\sqrt{a^2-x^2}$
Step 2:
$dv=dx\Rightarrow v=x$
Now substituting for $u,v,du$ and $dv$ we get,
$I=x\sqrt{a^2-x^2}-\int x.\big(-\large\frac{x}{\sqrt{a^2-x^2}}\big)$$dx$
Consider $I_1=-\int\large\frac{x^2}{\sqrt{a^2-x^2}}$$dx$
Add and subtract $a^2$
On separating we get,
But $\int\sqrt{a^2-x^2}dx=I$
Substituting we get,
Step 3:
Hence proved.
answered Nov 14, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App