Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the vector equation of the plane, passing through the points A(2,2,-1), B(3,4,2) and C(7,0,6). Also, find the cartesian equation of the plane.

Can you answer this question?

1 Answer

0 votes
  • Cartesian form of the plane containing three non collinear points $(x_1,y_1,z_1),(x_2,y_2,z_2)$ and $(x_3,y_3,z_3)$ are $\begin{vmatrix}x-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&y_3-y_1&z_3-z_1\end{vmatrix}=0$
Step 1:
The given points are $A(2,2,-1),B(3,4,2)$ and $C(7,0,6)$
Let $\overrightarrow a=2\hat i+2\hat j-\hat k,\overrightarrow b=3\hat i+4\hat j+2\hat k$ and $\overrightarrow c=7\hat i+6\hat k$
Hence the vector equation of the line passing through the points.
$(\overrightarrow r-\overrightarrow a).(\overrightarrow{AB}\times \overrightarrow{AC})=0$
$(\overrightarrow r-\overrightarrow a).(\overrightarrow{b}-\overrightarrow{a}\times (\overrightarrow c-\overrightarrow{a})=0$
$\overrightarrow b-\overrightarrow a=(3\hat i+4\hat j+2\hat k)-(2\hat i+2\hat j-\hat k)$
$\Rightarrow \hat i+2\hat j+3\hat k$
$\overrightarrow c-\overrightarrow a=(7\hat i+6\hat k)-(2\hat i+2\hat j-\hat k)$
$\Rightarrow 5\hat i-2\hat j+7\hat k$
The required equation of the plane is $\overrightarrow r-(2\hat i+2\hat j-\hat k).[(\hat i+2\hat j+3\hat k)\times (5\hat i-2\hat j+7\hat k)=0$
Step 2:
$\begin{vmatrix}\hat i&\hat j&\hat k\\1 & 2 &3\\5 &-2&7\end{vmatrix}$
$\Rightarrow \hat i(14+6)-\hat j(7-15)+\hat k(-2-10)$
$\Rightarrow 20\hat i+8\hat j-12\hat k$
$\Rightarrow (\overrightarrow r-2\hat i+2\hat j-\hat k).20\hat i+8\hat j-12\hat k)=0$
This is required vector equation of the plane.
Step 3:
The cartesian equation is
(i.e) $\begin{vmatrix}x-2&y-2&z+1\\3-2&4-2&2+1\\7-2&0-2&6+1\end{vmatrix}=0$
$\Rightarrow (x-2)(20)-(y-2)(-8)+(z+1)(-12)=0$
$\Rightarrow 20x-40+8y-16-12z-12=0$
This is required equation of the plane.
answered Nov 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App