Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Can you answer this question?

1 Answer

0 votes
  • Volume of the balloon $V=\large\frac{4}{3}$$\pi r^3$
Step 1:
Volume of the balloon $V=\large\frac{4}{3}$$\pi r^3$
Diff w.r.t $t$ we get,
$\large\frac{dv}{dt}=\frac{4}{3}$$\pi 3r^2\large\frac{dr}{dt}$
When $t=0,r=$3 units
When $t=3,r=$6 units
It is given $\large\frac{dv}{dt}$=constant=k(say)
$\therefore k=4\pi r^2\large\frac{dr}{dt}$
Separating the variables we get,
$\therefore kdt=4\pi r^2dr$
Step 2:
Integrate on both sides
$k\int dt=4\pi\int r^2dr$
$kt=4\pi \large\frac{r^3}{3}$$+c$------(1)
When $t=0,r=$3units
$\Rightarrow k(0)=\large\frac{4\pi(3)^3}{3}$$+c$
Step 3:
When $t=3sec,r=6$units
$\Rightarrow k(3)=\large\frac{4\pi(6)^3}{3}$$+36\pi$
$\therefore$ Hence $c=36\pi$ and $k=108\pi$
Step 4:
Now substituting the values in equ(1)
$108\pi t=\large\frac{4}{3}$$\pi r^3+36\pi$
$4\pi r^3=36\pi-108\pi t$
$\therefore r=\sqrt[\large 3]{9-27t}$
answered Nov 8, 2013 by sreemathi.v
edited Nov 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App