Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Differentiate the following function w.r.t.\( x\) $(x)^{\Large\cos x}+(\sin x)^{\Large\tan \: x} $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx}$
  • $\log m^{\large n}=n\log m$
  • According to product rule we have $(uv)'=u'v+uv'$
Step 1:
$y=x^{\cos x}+\sin x^{\tan x}$
Let $y_1=x^{\cos x}$
Take $\log$ on both sides
$\log y_1=\cos x.\log x$
Diff w.r t $x$
Apply product rule
$\large\frac{1}{y_1}\frac{dy}{dx}=$$\cos x.\large\frac{1}{x}$$+\log x(-\sin x)$
$\qquad=\large\frac{\cos x}{x}$$-\sin x.\log x$
$\therefore \large\frac{dy}{dx}=$$y_1[\large\frac{\cos x}{x}$$-\sin x\log x]$
$\Rightarrow x^{\cos x}[\large\frac{\cos x}{x}-$$\sin x\log x]$--------(1)
Step 2:
Let $\sin x^{\tan x}=y_2$
Take $\log$ on both sides
$\log y_2=\tan x\log \sin x$
Diff.w.r.t $x$ on both sides
$\large\frac{1}{y_2}\frac{dy}{dx}=$$\tan x.\large\frac{1}{\sin x}$$\cos x+\log\sin x.\sec^2 x$
$\therefore \large\frac{dy}{dx}=$$y_2[1+\log\sin x.\sec^2x]$
$\therefore \large\frac{dy}{dx}=$$\sin x^{\large\tan x}[1+\log\sin x.\sec^2x]$-----(2)
Step 3:
Combining equ(1) & equ(2) we get
$\large\frac{dy}{dx}$$=x^{\large\cos x}[\large\frac{\cos x}{x}$$-\sin x\log x]+\sin x^{\large\tan x}[1+\log\sin x.\sec^2x]$
answered Nov 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App