(9am to 6pm)

Ask Questions, Get Answers

Want help in doing your homework? We will solve it for you. Click to know more.
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives

Using differentials, find the approximate value of each of the following up to $3$ places of decimal. $(i)\;\sqrt{25.3}$

$\begin{array}{1 1} 5.03 \\ 6.03 \\ 8.03 \\ 9.03 \end{array} $

1 Answer

Need homework help? Click here.
  • Let $y=f(x)$
  • $\Delta x$ denote a small increment in $x$
  • $\Delta y=f(x+\Delta x)-f(x)$
  • $dy=\big(\large\frac{dy}{dx}\big)\Delta x$
Step 1:
Let $y=\sqrt x$
$\Delta x=0.3$
$\Delta y=\sqrt{x+\Delta x}-\sqrt x$
$\sqrt{25.3}=\Delta y+5$-------(1)
Now $dy$ is approximately equal to $\Delta y$
$dy=\big(\large\frac{dy}{dx}\big)\Delta x$
$\large\frac{dy}{dx}=\frac{1}{2\sqrt x}$[differentiating y with respect to x]
$dy=\large\frac{1}{2\sqrt x}$$\Delta x$
Step 2:
By substituting the value of $\sqrt x$ and $\Delta x$ we get,
$\Rightarrow \large\frac{1}{2\sqrt {25}}$$\times 0.3$
$\Rightarrow \large\frac{1}{2\times 5}$$\times 0.3$
$\Rightarrow \large\frac{1}{10}$$\times 0.3$
Substitute the value of $dy$ in equ(1)
$\sqrt{25.3}=5+\Delta y$
answered Aug 5, 2013 by sreemathi.v

Related questions