logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int \large\frac{1+cot x}{x+\log \sin x}$$ dx $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\large\frac{d}{dx}$$(\log \sin x)=\large\frac{1}{\sin x}$
  • If $f(x)$ is substituted by $f(t),$ then $f'(x) dx=f'(t)dx$
  • Hence $\int f(x) dx=\int f(t)dt$
Step 1:
$I=\int\large\frac{1+\cot x}{x+\log\sin x}$$dx$
Let $x+\log\sin x=t$
On differentiating w.r.t $x$ we get
$1+\large\frac{1}{\sin x}$$\cos xdx=dt$
$(1+\cot x)dx=dt$
Step 2:
Now substituting for t and dt we get,
$I=\int\large\frac{dt}{t}$
On integrating we get,
$\;\;=\log \mid t\mid+c$
$\;\;=\log(x+\log\sin x)+c$
answered Nov 7, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...