Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the area of a minor segment of the circle \( x^2+y^2=a^2\) cut off by the line \( x=\large \frac{a}{2}.\)

Can you answer this question?

1 Answer

0 votes
  • If we are given two curves represented by y=f(x);y=g(x),where $f(x)\geq g(x)$ in [a,b],the points of intersection of two curves are given by x=a and x=b,by taking common values of y from the equation of the two curves.
Step 1:
Let the equation of the curve $x^2+y^2=a^2$ be $R_1$ and the equation of the line $x=\large\frac{a}{2}$$=R_2$
Let us find the point of intersection of the two curves by solving the two equation.
$\Rightarrow \large\frac{a^2}{4}$$+y^2=a^2$
$\Rightarrow y^2=a^2-\large\frac{a^2}{4}=\frac{3a^2}{4}$
$\Rightarrow y=\pm\large\frac{\sqrt 3 a}{2}$ and $x=\pm \large\frac{a}{2}$
$\therefore P(\large\frac{x}{2},\frac{\sqrt 3a}{2})$ is the point of intersection in the first quadrant.
Step 2:
The smaller region bounded by the curves is the shaded portion as shown in the figure.
$\qquad=2\int\limits_{\sqrt 3a/2}^a\sqrt{a^2-x^2}dx$
On integrating we get,
$2\big[\large\frac{x}{2}$$\sqrt{a^2-x^2}+\large\frac{1}{2}$$a^2\sin^{-1}\large\frac{x}{a}\big]_{\sqrt 3a/2}^a$
On applying limits we get,
$2[0+\large\frac{a^2}{2}$$\sin^{-1}(1)-[\large\frac{\sqrt 3a}{2}$$\sqrt{a^2-\large\frac{3a^2}{4}}+\large\frac{a^2}{2}$$\sin^{-1}(\large\frac{\sqrt 3a}{2a})]$
But $\sin^{-1}(1)=\large\frac{\pi}{2}$ and $\sin^{-1}(\large\frac{\sqrt 3}{2})=\large\frac{\pi}{3}$
$\Rightarrow 2[\large\frac{a^2}{2}\frac{\pi}{2}-\frac{\sqrt 3a}{2}\times \frac{\sqrt 3a}{2}-\frac{a^2}{2}.\frac{\pi}{3}]$
$\Rightarrow \large\frac{\pi a^2}{2}-\frac{3a^2}{2}-\frac{\pi a^2}{3}$
$\Rightarrow \large\frac{\pi a^2}{6}-\frac{3a^2}{2}$
$\Rightarrow \large\frac{a^2}{2}\big(\large\frac{\pi}{3}$$-3)$ sq.units
answered Nov 7, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App