Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the area of the parallelogram whose diagnols are represented by the vectors $ \overrightarrow d_1 = 3\hat i +\hat j -2\hat k\: and \: \overrightarrow d_2 = \hat i -3\hat j +4\hat k.$

Can you answer this question?

1 Answer

0 votes
  • Area of the parallelogram is $\large\frac{1}{2}$$\mid d_1\times d_2\mid$
Step 1:
Given :
$\overrightarrow d_1=3\hat i+\hat j-2\hat k$
$\overrightarrow d_2=\hat i-3\hat j+4\hat k$
$\overrightarrow {d_1}\times\overrightarrow {d_2}=\begin{vmatrix}\hat i&\hat j&\hat k\\3 &1&-2\\1 &-3&4\end{vmatrix}$
$\qquad\;\;\quad=\hat i(4-6)-\hat j(12+2)+\hat k(-9-1)$
$\qquad\;\;\quad=-2\hat i-14\hat j-10\hat k$
Step 2:
$\mid\overrightarrow {d_1}\times \overrightarrow {d_2}\mid=\sqrt{(-2)^2+(-14)^2+(-10)^2}$
Area of the parallelogram is $\large\frac{1}{2}$$\mid d_1\times d_2\mid$
$\Rightarrow \large\frac{1}{2}$$\sqrt{300}$ sq.units
$\Rightarrow \large\frac{10\sqrt 3}{2}$
$\Rightarrow 5\sqrt 3$ sq.units
answered Nov 7, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App