Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find $ \int_2^8 \large\frac{\sqrt{10-x}}{\sqrt x+\sqrt{10-x}}$$dx $

Can you answer this question?

1 Answer

0 votes
  • $\int\limits_a^bf(x)dx=\int\limits_a^b[ f(a+b)-x]dx$
Step 1:
$I=\int\limits_2^8\large\frac{\sqrt{10-x}}{\sqrt x+\sqrt{10-x}}$$dx$------(1)
$\int\limits_a^bf(x)dx=\int\limits_a^b[ f(a+b)-x]dx$
Applying the above property we get,
$I=\int\limits_2^8\large\frac{\sqrt x}{\sqrt{10-x}+\sqrt x}$$dx$-------(2)
Step 2:
Add equation(1) and equation(2)
$2I=\int\limits_2^8\large\frac{\sqrt x+\sqrt{10-x}}{\sqrt{10-x}+\sqrt x}$
On integrating we get,
$\therefore 2I=\big[x\big]_2^8$
Step 3:
On applying limits we get,
answered Nov 7, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App