Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

An urn contains 3 red pens,4 green pens and 6 yellow pens.The number of ways of drawing 4 pens from the urn if atleast one red pen is to be included in the draw is (All the pens are different from each other).

$\begin{array}{1 1}(A)\;500\\(B)\;505\\(C)\;510\\(D)\;\text{None of these}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
Required number of ways =Total number of ways choosing 4 pens -number of ways of choosing 4 non-red pens
$\Rightarrow {(3+4+6)}C_4-{4+6}C_4=13C_4-10C_4$
$\Rightarrow \large\frac{13!}{4!9!}-\frac{10!}{4!6!}$
$\Rightarrow \large\frac{13\times 12\times 11\times 10\times 9!}{4\times 3\times 2\times 1\times 9!}-\frac{10\times 9\times 8 \times 7\times 6!}{4\times 3\times 2\times 1\times 6!}$
$\Rightarrow 715-210$
$\Rightarrow 505$
Hence (B) is the correct answer.
answered Jun 20, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App