logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

Total number of ways in which 15 identical blanks can be distributed among 4 persons so that each of them gets atleast two blankets is equal to

$\begin{array}{1 1}(A)\;10C_3\\(B)\;9C_3\\(C)\;11C_3\\(D)\;\text{None of these}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
$x_1+x_2+x_3+x_4=15$ and $x_i \geq 2$
$\Rightarrow (x_1-2)+(x_2-2)+(x_3-2)+(x_4-2)=7$
$\Rightarrow y_1+y_2+y_3+y_4=7$
Where $y_i=x_i-2 \geq 0$
$\Rightarrow 10C_7=10C_3$ are the number of non-negative.
Hence (A) is the correct answer.
answered Jun 20, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...