Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent.

$\begin{array}{1 1}(A)\;8.6C_4.7C_4\\(B)\;6.7.8C_4\\(C)\;6.8.7C_4\\(D)\;7.6C_4.8C_4\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
  • $n!=n(n-1)(n-2)(n-3)......(3)(2)(1)$
Given wird is MISSISSIPPI
Here I=4 times,S=4 times,P=2 times,M=1 time
$\therefore$ Required number of words =$8C_4\times \large\frac{7!}{4!2!}$
$\Rightarrow 8C_4\times \large\frac{7\times 6!}{4!2!}$
$\Rightarrow 7.8C_4.6C_4$
Hence (D) is the correct answer.
answered Jun 20, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App