logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent.

$\begin{array}{1 1}(A)\;8.6C_4.7C_4\\(B)\;6.7.8C_4\\(C)\;6.8.7C_4\\(D)\;7.6C_4.8C_4\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
  • $n!=n(n-1)(n-2)(n-3)......(3)(2)(1)$
Given wird is MISSISSIPPI
Here I=4 times,S=4 times,P=2 times,M=1 time
$\therefore$ Required number of words =$8C_4\times \large\frac{7!}{4!2!}$
$\Rightarrow 8C_4\times \large\frac{7\times 6!}{4!2!}$
$\Rightarrow 7.8C_4.6C_4$
Hence (D) is the correct answer.
answered Jun 20, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...