logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

9 balls are to be placed in 9 boxes and 5 of the balls cannot fit into 3 small boxes.The number of ways of arranging one ball in each of the boxes is

$\begin{array}{1 1}(A)\;18720\\(B)\;18270\\(C)\;17280\\(D)\;12780\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $P(n,r)=\large\frac{n!}{(n-r)!}$
  • $n!=n(n-1)(n-2)(n-3)....(3)(2)(1)$
Total no. of balls =9
5 ball cannot fit 3 small box
Required number of arrangements =$4P_3\times 6!$
$4P_3=\large\frac{4!}{1!}$$=4\times 3\times 2$
$\Rightarrow 24$
$6!=6\times 5\times 4\times 3\times 2\times 1$
$\Rightarrow 720$
$4P_3\times 6!=24\times 720$
$\Rightarrow 17280$
Hence (C) is the correct answer.
answered Jun 20, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...