Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

An open box with a square base is to be made out of a given quantity of cardboard of area \( c^2\) square units. Show that the maximum volume of the box is \(\large\frac{c^3}{6\sqrt 3}\) cubic units.

Can you answer this question?

1 Answer

0 votes
  • To obtain the absolute maxima or minima for the function $f(x)$
  • Find $f'(x)$ and put $ f'(x)=0$
  • Obtain the points from $f'(x)=0$
  • By Phthogoras theorem, find $f''(x)$ and check the value of $f''(x)$ for each of the points obtained if $f''(x)>0$ it has a minimum at that point. If $f''(x)<0$ then it has a maximum at that point.
Step 1:
Let the length, breadth and height of the box be $l, x\: and \: y$ respectively.
Area = $c^2$ sq. units.
$ \therefore x^2+4xy=c^2 $
Let $v$ be the volume of the box, then
$ \Rightarrow v=x^2 \bigg(\large\frac{c^2-x^2}{4x}\bigg)$
Step 2:
Differentiate w.r.t $x$ we get,
$ \large\frac{dv}{dx}=\large\frac{c^2}{4}-\large\frac{3x^2}{4}$
Again differentiate w.r.t $x$ we get,
$ \large\frac{d^2v}{dx^2}=-\large\frac{3x}{2}$
Step 3:
For maximum or minimum , we must have,
$ \large\frac{dv}{dx}=$$0 \Rightarrow \large\frac{c^2}{4}-\large\frac{3x^2}{4}=$$0$
$ \Rightarrow \large\frac{3x^2}{4}=\large\frac{c^2}{4}$
$ \Rightarrow x=\large\frac{c}{\sqrt 3}$
$ \bigg( \large\frac{d^2v}{dx^2} \bigg)_{x=\Large\frac{c}{\sqrt 3}}=\large\frac{-3c}{2\sqrt 3}$$ <0$
Thus, $v$ is maximum when $x=\large\frac{c}{\sqrt 3}$
Step 4:
Put $x=\large\frac{c}{\sqrt 3}$, we get
$ y=\large\frac{c}{2\sqrt 3}$
$ \therefore$ The maximum volume of the box is given by
$ v= x^2y$
$\;\;=\large\frac{c^2}{3} \times \large\frac{c}{2\sqrt 3}$
$\;\; = \large\frac{c^3}{6\sqrt 3}$ cubic units
answered Oct 4, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App