logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int \large\frac{dx}{\sqrt{8+2x-x^2}} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int\large\frac{dx}{\sqrt{a^2-x^2}}$$=\sin^{-1}\big(\large\frac{x}{a}\big)$$+c.$
Step 1:
$I=\int\large\frac{dx}{\sqrt{8+2x-x^2}}$
Consider $8+2x-x^2=-(x^2-2x-8)$
$\qquad\qquad\qquad\qquad=[(x-1)^2-1-8]$
$\qquad\qquad\qquad\qquad=[(x-1)^2-9]$
$\qquad\qquad\qquad\qquad=[(x-1)^2-(3)^2]$
$\qquad\qquad\qquad\qquad=[3^2-(x-1)^2]$
Step 2:
$\therefore I=\int \large\frac{dx}{\sqrt{3^2-(x-1)^2}}$
$\int\large\frac{dx}{\sqrt{a^2-x^2}}$$=\sin^{-1}\big(\large\frac{x}{a}\big)$$+c.$
Here $a=3,x=x-1$
$\quad\quad=\sin^{-1}\big(\large\frac{x-1}{3}\big)$$+c.$
answered Oct 3, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...