Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Compute the magnitude of the following vector $\large\frac{1}{\sqrt 3}\hat i + \frac{1}{\sqrt 3}\hat j - \frac{1}{\sqrt 3}\hat k. $

Can you answer this question?

1 Answer

0 votes
  • The distance between the initial point and the terminal point of a vector is the magnitude (or length) of the vector $\overrightarrow{AB}$.It is denoted by $\mid\overrightarrow{AB}\mid$ .
  • $\mid\overrightarrow{AB}\mid=\sqrt{a_1^2+a_2^2+a_3^2}$
  • Where $\overrightarrow{AB}=a_1\hat i+a_2\hat j+a_3\hat k.$
Step 1:
$\overrightarrow a = \large\frac{1}{\sqrt 3}$$\hat i +\large \frac{1}{\sqrt 3}$$\hat j - \large\frac{1}{\sqrt 3}$$\hat k$
Here $a_1=\large\frac{1}{\sqrt{3}}$$,a_2=\large\frac{1}{\sqrt{3}}$ and $a_3=-\large\frac{1}{\sqrt{3}}$
$\mid \overrightarrow{a}\mid=\sqrt{a_1^2+a_2^2+a_3^2}$
Step 2:
Hence $\mid\overrightarrow{a}\mid=\sqrt{\big(\large\frac{1}{\sqrt{3}}\big)^2+\big(\large\frac{1}{\sqrt{3}}\big)^2+\big(-\large\frac{1}{\sqrt{3}}\big)^2}$
answered Oct 3, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App