Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Find the middle term in the expansion of $(3-\large\frac{x^3}{6})^7$

$\begin{array}{1 1}(A)\;\large\frac{35}{48}\\(B)\;\large\frac{48}{35}\\(C)\;\large\frac{35}{48}\normalsize x^{12}\\(D)\;\large\frac{35}{48}\normalsize x^{10}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $n+1$ is even term .
  • $1^{st}$ middle term=$(\large\frac{n+1}{2})^{th}$ term
  • $2^{nd}$ middle term=$(\large\frac{n+1}{2}\normalsize +1)^{th}$ term
Number of terms in the expansion is $7+1=8$
There are two middle terms which are $T_4$ and $T_5$
Hence we are to find $T_4$ and $T_5$ in the given expansion
Putting $r=3$ we have
$\Rightarrow C(7,3)3^4(-1)^3\large\frac{x^9}{6^3}$
$\Rightarrow \large\frac{-7}{3!4!}\frac{3}{2^3}$$x^9$
$\Rightarrow -\large\frac{7\times 6\times 5\times 4!}{3\times 2\times 1\times 4!}.\frac{3}{2^3}$$x^9$
$\Rightarrow -\large\frac{105}{8}$$x^9$
Again $T_{r+1}=T_5$ or $r+1=5$
Putting $r=4$ in (1) we have
$\Rightarrow \large\frac{7!}{3!4!}\frac{3^3x^{12}}{3^42^4}$
$\Rightarrow \large\frac{35}{48}$$x^{12}$
Hence (C) is the correct answer.
answered Jun 23, 2014 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App