Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Find the middle term in the expansion of $\big(\large\frac{3}{3}$$+9y\big)^{10}$

$\begin{array}{1 1}(A)\;61236\\(B)\;6236x^2y^4\\(C)\;61236x^5y^5\\(D)\;61236x^4y^3\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $n+1$ is odd,the middle term is $\large\frac{(n+1)+1}{2}$$+n=\large\frac{n+2}{2}$$+h$
Number of terms in the expansion is $10+1=11$
Middle term of the expansion is $\large\frac{11+1}{2}$$=T_6$
But $T_{n+r}=T_6$ or $r+1=6$
Putting $r=5$ in (1) we have
$\Rightarrow C(10,5)\large\frac{x^5}{3^5}$$.9^5y^5$
$\Rightarrow C(10,5) 3^5 X^5y^5$
$\Rightarrow \large\frac{10!}{5!(10-5)!}$$3^5x^5y^5$
$\Rightarrow \large\frac{10!}{5!5!}$$3^5x^5y^5$
$\Rightarrow \large\frac{10\times 9\times 8\times 7\times 6\times 5!}{5\times 4\times 3\times 2\times 1\times 5!}$$3^5x^5y^5$
$\Rightarrow 61236 x^5y^5$
Hence (C) is the correct answer.
answered Jun 23, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App