Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Find $a,b$ and $n$ in the expansion of $(a+b)^n$ if the first three terms of the expansion are $729,7290$ and $30375$ respectively.

$\begin{array}{1 1}(A)\;a=2,b=4,n=7\\(B)\;a=3,b=5,n=6\\(C)\;a=4,b=5,n=8\\(D)\;a=4,b=6,n=10\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
$T_1$ of $(a+b)^n=a^n=729$------(1)
$T_2$ of $(a+b)^n=nC_1a^{n-1}b=7290$------(2)
$T_3$ of $(a+b)^n=nC_2a^{n-2}b^2=30375$------(3)
Dividing (1) by (2)
Dividing (2) by (3)
Or $\large\frac{na^{n-1}b}{\Large\frac{n(n-1)}{2}a^{n-2}b^2}=\frac{7290}{30375}$
$\Rightarrow \large\frac{6}{25}$
Or $\large\frac{n}{n-1}\times \frac{a}{b}=\frac{6}{25}$-----(5)
Dividing (4) by (5)
$\large\frac{a}{nb}\times \frac{(n-1)b}{2a}=\frac{1}{10}\times \frac{25}{6}$
$\Rightarrow \large\frac{8}{12}$
Or $\large\frac{n-1}{2n}=\frac{5}{12}$
Also putting $n=6,a=3$ in (4)
$\therefore b=\large\frac{3\times 10}{6}$$=5$
Thus $a=3,b=5,n=6$
Hence (B) is the correct answer.
answered Jun 23, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App