Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Find $x$ if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $(4\sqrt 2+\large\frac{1}{4\sqrt 3})^n$ is $\sqrt 6 :1$

$\begin{array}{1 1}(A)\;8\\(B)\;9\\(C)\;10\\(D)\;11\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}$=General term =$nC_ra^{n-r}b^r$
  • $\therefore (a+b)^n=\sum\limits_{r=0}^n nC_ra^{n-r}b^r$
$T_5$ in $\big[2^{\Large\frac{1}{4}}+\large\frac{1}{3^{\Large\frac{1}{4}}}\big]^n$$=nC_4(2^{1/4})^{n-4}.\big(\large\frac{1}{3^{1/4}}\big)^4$
$\Rightarrow nC_42^{\Large\frac{n-4}{4}}.\large\frac{1}{3}$-------(1)
Total number of terms =n+1
Fifth term from the end =$[(n+1)-5+1)]^{th}$ term from the beginning.
$\Rightarrow (n-3)^{th}$ term from the beginning.
$\Rightarrow nC_{n-4}(2^{1/4})^{n-(n-4)}\big(\large\frac{1}{3^{1/4}}\big)^{n-4}$
$\Rightarrow nC_4.2(\large\frac{1}{3})^{\Large\frac{n-4}{4}}$------(2)
Dividing (1) by (2)
$\large\frac{nC_42^{\Large\frac{n-4}{4}}.\large\frac{1}{3}}{nC_4.2(\large\frac{1}{3})^{\Large\frac{n-4}{4}}}=\frac{\sqrt 6}{1}$
Or $\large\frac{2^{\Large\frac{n}{4}-2}}{(1/3)^{\Large\frac{n}{4}-2}}=\frac{\sqrt 6}{1}$
Or $2^{\Large\frac{n}{4}-2}.3^{\Large\frac{n}{4}-2}=6^{\Large\frac{1}{2}}$
$\therefore \large\frac{n}{4}$$-2=\large\frac{1}{2}$
$\therefore \large\frac{n}{4}=\frac{5}{2}$
$n=\large\frac{5}{2}$$\times 4$
Hence (C) is the correct answer.
answered Jun 24, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App