Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Find the term independent of $x$ in the expansion of $(3x-\large\frac{2}{x^2})^{15}$

$\begin{array}{1 1}(A)\;-3003(3^{10})(2^5)\\(B)\;3003(3^{10})(2^5)\\(C)\;300(3^{11})(2^5)\\(D)\;-300(3^{15})(2^{10})\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}=nC_ra^{n-r}b^r$
$(3x-\large\frac{2}{x^2})^{15}$$=(-1)^r 15C_r(3x)^{n-r}(\large\frac{2}{x^2})^r$
$T_{r+1}=(-1)^r 15C_r(3)^{15-r}(x)^{n-r}\large\frac{2^r}{x^{2r}}$
$\Rightarrow (-1)^r 15C_r(3)^{15-r}(x)^{15-r}\large\frac{2^r}{x^{2r}}$
Since the term is independent of $x$ in the expansion we have
Hence $6^{th}$ term is independent of $x$
$T_6=(-1)^515C_5 3^{10}.2^5$
$\Rightarrow \large\frac{15!}{5!10!}$$ 3^{10}.2^5$
$\Rightarrow \large\frac{-15\times 14\times 13\times 12\times 11\times 10!}{5\times 4\times 3\times 2\times10!}$$ 3^{10}.2^5$
$\Rightarrow -3003(3^{10})(2^5)$
Hence (A) is the correct answer.
answered Jun 24, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App