Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the area of the origin enclosed between the two curves \( (x-6)^2+y^2=36\: and \: x^2+y^2=36\)

Can you answer this question?

1 Answer

0 votes
  • If we are given two curves represented by y=f(x);y=g(x),where $f(x)\geq g(x)$ in [a,b],the points of intersection of two curves are given by x=a and x=b,by taking common values of y from the equation of the two curves.
Step 1:
Given curves are $(x-6)^2+y^2=36$ and $x^2+y^2=36$
The area of the required region is as shown in the fig.
Step 2:
By solving the two equations,we can find the points of intersection of the two circles.
$\Rightarrow 12x=36$
$\Rightarrow 3$
When $x=3,y=\pm 3\sqrt 3$
Hence the points of intersection are $A(3,3\sqrt 3)$ and $A'(3,-3\sqrt 3)$
Step 3:
Required area=2[area of the region ODCAO]
$\qquad\qquad\;\;\;$=2[area of the region ODAOC+area of the region DCAD]
$\qquad\qquad\;\;\;=2[\int_0^3 ydx+\int_3^6 ydx]$
$\qquad\qquad\;\;\;=2[\int_0^3 \sqrt{36-(x-6)^2}dx+\int_3^3\sqrt{ 36-x^2}]dx$
On integrating we get,
$\qquad\qquad\;\;\;=2\big[\large\frac{1}{2}$$(x-6)\sqrt{36-(x-6)^2}+\large\frac{1}{2}$$\times 36\sin^{-1}\big(\large\frac{x-6}{6}\big)\big]_0^3+\large\frac{1}{2}$$(x)\sqrt{36-x^2}+\big[\large\frac{36}{2}$$\sin^{-1}\big(\large\frac{x}{6}\big)\big]_3^{3\sqrt 3}$
$\qquad\qquad\;\;\;=\big[(x-6)\sqrt{36-x^2}+36\sin^{-1}\big(\large\frac{x-6}{6}\big)\big]_3^{3\sqrt 3}$$+x\sqrt{36-x^2}+36\sin^{-1}\big(\large\frac{x}{6}\big)\big]_3^{3\sqrt 3}$
Step 4:
On applying limits,
$\qquad\qquad\;\;\;=[-3\sqrt{ 27}+36\sin^{-1}\big(\large\frac{-1}{2}\big)]$$-[0+36\sin^{-1}(-1)]+[3\sqrt 3\times 3+36\sin^{-1}\big(\large\frac{\sqrt 3}{2}\big)-$$3\sqrt{27}-36\sin^{-1}\big(\large\frac{1}{2}\big)]$
$\qquad\qquad\;\;\;=-6\sqrt{27}-36\times \large\frac{\pi}{6}$$-36\times (-\large\frac{\pi}{2}\big)$$+9\sqrt 3+36\big(\large\frac{\pi}{3}\big)-$$3\sqrt{27}-36\big(\large\frac{\pi}{6}\big)$
$\Rightarrow 30\pi-18\sqrt 3$
answered Oct 3, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App