logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Find the middle term in the expansion of $(3x-\large\frac{x^3}{6})^9$

$\begin{array}{1 1}(A)\;\large\frac{189}{8}\normalsize x^{17};-\large\frac{21}{16}\normalsize x^{19}\\(B)\;\large\frac{189}{8}\normalsize x^{17};-\large\frac{22}{16}\normalsize x^{15}\\(C)\;\large\frac{8}{189}\normalsize x^{17};-\large\frac{21}{16}\normalsize x^{19}\\(D)\;\large\frac{8}{189}\normalsize x^{17};-\large\frac{25}{4}\normalsize x^{13}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If $n+1$ is even term
  • First middle term =$\large\frac{n+1}{2}^{th}$ term
  • Second middle term =$(\large\frac{n+1}{2}$$+1)^{th}$ term
Number of terms in the expansion is 9+1=10
There are two middle terms $T_5$ and $T_6$
Hence we are to find $T_5$ and $T_6$
$(3x-\large\frac{x^6}{6})^9=$$[3x+(-\large\frac{x^6}{6}]^9$
$T_{r+1}=C(9,r) (3x)^{9-r}.(\large\frac{x^6}{6})^r$
$T_{r+1}=T_5$
$r+1=5$
$r=4$
Putting $r=4$ we have
$T_{4+1}=C(9,4)(3x)^{9-4}(\large\frac{x^3}{6})^4$
$\Rightarrow C(9,4)(3x)^{5}(\large\frac{x^{12}}{6^4})$
$\Rightarrow \large\frac{9!}{4!5!}$$(3^5x^{5})(\large\frac{x^{12}}{6^4})$
$\Rightarrow \large\frac{9!}{4!5!}\frac{3^5x^{17}}{6^4}$
$\Rightarrow \large\frac{9\times 8\times 7\times 6\times 5!}{4\times 3\times 2\times5!}\frac{3^5x^{17}}{6^4}$
$\Rightarrow \large\frac{126}{1}\frac{3^5x^{17}}{6^4}$
$\Rightarrow \large\frac{189}{8}$$x^{17}$
Second term :-
$T_6=C(9,5).(3x)^{9-5}(\large\frac{-x^3}{6})^5$
$\Rightarrow C(9,5).(3x)^{4}\large\frac{-x^{15}}{6^5}$
$\Rightarrow \large\frac{9!}{5!4!}$$3^4.x^4.\large\frac{-x^{15}}{6^5}$
$\Rightarrow \large\frac{9\times 8\times 7\times 6\times 5!}{5!4\times 3\times 2}$$3^4.\large\frac{-x^{19}}{6^5}$
$\Rightarrow \large\frac{-126.3^4}{6^5}$$x^{19}$
$\Rightarrow \large\frac{-21}{16}$$x^{19}$
Hence (A) is the correct answer.
answered Jun 24, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...