logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Model Papers

Show that the cylinder of given volume open at the top has minimum total surface area if its height is equal to radius of the base.

Download clay6 mobile app

1 Answer

Toolbox:
  • $V=\pi r^2h$
Step 1:
Let $r$ be the radius and $h$ be the the height of a cylinder of given volume $V$
$V=\pi r^2h$
$h=\large\frac{v}{\pi r^2}$
Let $S$ be total surface area.Since the cylinder is open at its top.
$S=2\pi rh+\pi r^2$
Substituting for $h$ we get,
$S=2\pi r\big(\large\frac{v}{\pi r^2}\big)$$+\pi r^2$
$\;\;=\large\frac{2v}{r}$$+\pi r^2$
Step 2:
Differentiating with respect to $x$ we get,
$\large\frac{dS}{dr}=\frac{-2v}{r^2}$$+2\pi r$
For maximum or minimum
$\large\frac{dS}{dr}=$$0$
$\Rightarrow \large\frac{2v}{r^2}+$$2\pi r=0$
(i.e) $\large\frac{-v}{r^2}$$+\pi r=0$
$\therefore v=\pi r^3$
$\pi r^2h=\pi r^3$
$\Rightarrow h=r$
Step 3:
Differentiating again with respect to $r$ we get,
$\large\frac{d^2S}{dr^2}=\frac{4v}{r^3}$$+2\pi$
When $r=h$
$\large\frac{d^2S}{dr^2}=\frac{4v}{r^3}$$+2\pi$ >0
Hence $S$ is minimum when $h=r$ (i.e) when the height of the cylinder is equal to the radius of the base.
answered Oct 2, 2013 by sreemathi.v
 

Related questions

...
X