Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

If $p$ is a real number and if the middle term in the expansion of $(\large\frac{p}{2}$$+2)^8$ is 1120.Find $p$

$\begin{array}{1 1}(A)\;\pm 3\\(B)\;\pm 2\\(C)\;\pm 4\\(D)\;\pm 5\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If n is even then the total number of terms in the expansion of $(a+b)^n$ is $n+1$.Hence there is only one middle term i.e $\big(\large\frac{n}{2}$$+1\big)^{th}$ term
  • $T_{r+1}=nC_r(a)^{n-r} b^r$
Number of terms in the expansion is $n+1=8+1=9$
Hence the middle term is $\large\frac{n+2}{2}=\frac{8+2}{2}$$=5^{th}$
$T_{r+1}=T_5=8C_4 (\large\frac{p}{2})^4$$2^4$
$\Rightarrow \large\frac{8!}{4!4!}.\frac{p^4}{16}$$.16$
$\Rightarrow \large\frac{8\times 7\times 6\times 5\times 4!}{4\times 3\times 2\times4!}.\frac{p^4}{16}$$.16$
$\Rightarrow 70p^4$
The middle term is equal to 1120
$\Rightarrow 70p^4=1120$
$\Rightarrow p^4=16$
$\Rightarrow p=\pm 2$
Hence (B) is the correct answer.
answered Jun 24, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App