Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

Given the integers $r > 1,n > 2$ and coefficients of $(3r)^{th}$ and $(r+2)^{nd}$ terms in the binomial expansion of $(1+x)^{2n}$ are equal then

$\begin{array}{1 1}(A)\;n=2r\\(B)\;n=3r\\(C)\;n=2r+1\\(D)\;\text{None of these}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}=nC_r a^{n-r}b^r$
$\therefore 2nC_{r+1}=2nC_{3r-1}$
$\Rightarrow r+1=3r-1$
$\Rightarrow (r+1)+(3r-1)=2n$
$\Rightarrow 4r=2n$ or $r=\large\frac{n}{2}$
$\Rightarrow r=\large\frac{n}{2}$
$\Rightarrow n=2r$
Hence (A) is the correct answer.
answered Jun 24, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App