Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio $ 1 : 4$ are

$\begin{array}{1 1}(A)\;3^{rd}\;and\;4^{th}\\(B)\;4^{th}\;and\;5^{th}\\(C)\;5^{th}\;and\;6^{th}\\(D)\;6^{th}\;and\;7^{th}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}=nC_ra^{n-r}b^r$
The two successive terms are $nC_r,nC_{r+1}$
$\Rightarrow $ The ratio given is $1 : 4$
$\Rightarrow \large\frac{24C_r}{24C_{r+1}}=\frac{1}{4}$
$\Rightarrow \large\frac{r+1}{24-r}=\frac{1}{4}$
$\Rightarrow 24-r=4(r+1)$
$\Rightarrow 24-r=4r+4$
$\Rightarrow -4r-r=4-24$
$\Rightarrow -5r=-20$
$\Rightarrow r=4$
Hence the two consecutive terms are $4^{th}$ and $5^{th}$
Hence (B) is the correct answer.
answered Jun 24, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App