Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Show that the points \( A(-2\hat i + 3\hat j + 5\hat k), B(i+2j+3k) \: and \: C(7\hat i - \hat k) \) are collinear.

Can you answer this question?

1 Answer

0 votes
  • Two or more vectors are said to be collinear,if they are parallel to be same line,irrespective of their magnitudes and direction.
Step 1:
Given :
$\overrightarrow {OA}=-2\hat i+3\hat j+5\hat k$
$\overrightarrow {OB}=\hat i+2\hat j+3\hat k$
$\overrightarrow {OC}=7\hat i-\hat k$
$\overrightarrow {AB}=\overrightarrow {OB}-\overrightarrow {OA}$
$\quad\;=(1+2)\hat i+(2-3)\hat j+(3-5)\hat k$
$\quad\;=3\hat i-\hat j-2\hat k$
Step 2:
$\overrightarrow {BC}=\overrightarrow {OC}-\overrightarrow {OB}$
$\quad\;=(7-1)\hat i+(0-2)\hat j+(-1-3)\hat k$
$\quad\;=6\hat i-2\hat j-4\hat k$
Step 3:
$\overrightarrow {AC}=\overrightarrow {OC}-\overrightarrow {OA}$
$\quad\;=(7+2)\hat i+(0-3)\hat j+(-1-5)\hat k$
$\quad\;=9\hat i-3\hat j-6\hat k$
Step 4:
$\mid\overrightarrow {AB}\mid=\sqrt{3^2+(-1)^2+(-2)^2}$
$\mid\overrightarrow {BC}\mid=\sqrt{6^2+(-2)^2+(-4)^2}$
$\mid\overrightarrow {AC}\mid=\sqrt{9^2+(-3)^2+(-6)^2}$
$\therefore\mid \overrightarrow{AC}\mid=\mid \overrightarrow{AB}\mid+\mid \overrightarrow{BC}\mid$
Hence the points A,B and C are collinear.
answered Oct 2, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App