logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Using the properties of determinants, prove the following : \[ \begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} \]

Can you answer this question?
 
 

1 Answer

0 votes

 

Toolbox:
  • If some or all elements of a row or column of a determinant are expressed as sum of two (or more)terms,then the determinant can be expressed as sum of two (or more)determinants.
  • Elementary transformations can be done by
  • 1. Interchanging any two rows or columns. rows.
  • 2. Mutiplication of the elements of any row or column by a non-zero number
  • 3. The addition of any row or column , the corresponding elemnets of any other row or column multiplied by any non zero number.
By using the property ,the given determinant can be expressed as sum of two determinant say $\bigtriangleup=\bigtriangleup_1+\bigtriangleup_2.$
 
Therefore $\bigtriangleup=\begin{vmatrix}b+c & q+r & y+z\\c+a & r+p & z+x\\a+b & p+q & x+y\end{vmatrix}$
 
$\qquad=\begin{vmatrix}b & q & y\\c & r & z\\a & p & x\end{vmatrix}+\begin{vmatrix}c & r& z\\a & p & x\\b & q & y\end{vmatrix}$
 
By interchanging the $R_3$ as $ R_1$ and $R_1$ as $R_3$ in $\bigtriangleup_1$ (i.e)$R_1\leftrightarrow R_3$ and $R_3\leftrightarrow R_1$
 
$\bigtriangleup_1=\begin{vmatrix}a & p & x\\b & q & y\\c & r & z\end{vmatrix}$
 
Similarly by interchanging the $R_2$ as $ R_1$ and $R_1$ as $R_3$ in $\bigtriangleup_2$ (i.e)$R_1\leftrightarrow R_2$ and $R_1\leftrightarrow R_3$
 
$\bigtriangleup_2=\begin{vmatrix}a & p & x\\b & q & y\\c & r & z\end{vmatrix}$
 
Now adding $\bigtriangleup_1$ and $\bigtriangleup_2$
 
We get $\bigtriangleup=\begin{vmatrix}a & p & x\\b & q & y\\c & r & z\end{vmatrix}+\begin{vmatrix}a & p & x\\b & q & y\\c & r & z\end{vmatrix}$
 
$\qquad\qquad=2\begin{vmatrix}a & p & x\\b & q & y\\c & r & z\end{vmatrix}$
 
Hence proved.
 

 

answered Mar 13, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...