Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

The position of the term independent of $x$ in the expansion of $\big(\sqrt{\large\frac{x}{3}}+\large\frac{3}{2x^2}\big)^{10}$ is

$\begin{array}{1 1}(A)\;10C_1\\(B)\;\large\frac{5}{12}\\(C)\;1\\(D)\;\text{Third term}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}=nC_r a^{n-r} b^r$
$T_{r+1}=10C_r \big(\sqrt{\large\frac{x}{3}}\big)^{10-r}.(\large\frac{3}{2x^2})^r$
$\Rightarrow 10C_r \big((\large\frac{x}{3})^{1/2}\big)^{10-r}.\big(\large\frac{3}{2x^2}\big)^r$
$\Rightarrow 10C_r \big[\large\frac{x}{3}^{\Large\frac{10-r}{2}}\big(\large\frac{3}{2^r x^{2r}}\big)$
$\Rightarrow 10C_r (\large\frac{1}{\sqrt 3})^{10-r}(\large\frac{3}{2})^r.$$x^{5-\Large\frac{r}{2}-\normalsize 2r}$
Let $T_{r+1}$ be the term independent of $x$
Hence the third term is independent of $x$
Hence (D) is the correct answer.
answered Jun 25, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App