Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Find the mean deviation about the mean for the data $4,7,8,9,10,12,13,17$

$\begin{array}{1 1}(A)\;1\\(B)\;2\\(C)\;3\\(D)\;4\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Mean deviation about can be calculated by the formula $= \large\frac{\sum |X_i- \bar{X}|}{n}$ where $\bar {X}=$ mean of the given observations.
Step 1:
Mean of the given series $\bar {X}=\large\frac{Sum\;of\;terms}{Number\;of\;terms}$
$\qquad= \large\frac{\sum X_i}{n}$
$\qquad= \large\frac{4+7+8+9+10+12+13+17}{8}$$=10$
$X_i =4 , \qquad |X_i -\bar{X} |=|4-10|=6$
$X_i =7 , \qquad |X_i -\bar{X} |=|7-10|=3$
$X_i =8 , \qquad |X_i -\bar{X} |=|8-10|=2$
$X_i =9 , \qquad |X_i -\bar{X} |=|9-10|=1$
$X_i =10 , \qquad |X_i -\bar{X} |=|10-10|=0$
$X_i =12 , \qquad |X_i -\bar{X} |=|12-10|=2$
$X_i =13 , \qquad |X_i -\bar{X} |=|13-10|=3$
$X_i =17 , \qquad |X_i -\bar{X} |=|17-10|=7$
$\sum x_i =80 \qquad \sum |x_i -\bar{x}|=24$
Step 2:
$\therefore$ meandeviation about mean $=\large\frac{\sum |x_i - \bar {x}|}{n}$
$\qquad= \large\frac{24}{8}$
Hence C is the correct answer.
answered Jun 25, 2014 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App