Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Prove that the area of the right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

Can you answer this question?

1 Answer

0 votes
  • Area of the triangle $A=\large\frac{1}{2}$$\times\; x\sqrt{h^2-x^2}$
Step 1:
Let $h$ be the hypotenuse of the right angled triangle,and let $x$ be its altitude.
$\therefore$ Base of the triangle =$\sqrt{h^2-x^2}$
The area of the triangle is $A=\large\frac{1}{2}$$\times\;\sqrt{h^2-x^2}$
Step 2:
Now differentiating w.r.t $x$ we get,
For maximum or minimum,we have
(i.e) $\large\frac{1}{2}\big[\large\frac{h^2-2x^2}{\sqrt{h^2-x^2}}\big]$$=0$
$\Rightarrow h^2=2x^2$
$\therefore x=\large\frac{h}{\sqrt{2}}$
Step 3:
Again differentiating w.r.t $x$
When $x=\large\frac{h}{\sqrt 2}$
$\large\frac{d^2A}{dx^2}=\large\frac{1}{2}\big[\large\frac{-4(h/\sqrt 2)}{\sqrt{h^2-h^2/2}}+\frac{x(h^2-2(h/\sqrt 2)^2)}{(h^2-(h/\sqrt 2)^2)^{\Large\frac{3}{2}}}\big]$
Step 4:
On simplifying we get,
Thus $A$ is maximum when $x=\large\frac{h}{\sqrt 2}$
$\therefore$ Base =$\sqrt{h^2-\large\frac{h^2}{2}}$
$\Rightarrow \large\frac{h}{\sqrt{2}}$
$\therefore A$ is maximum when the triangle is isosceles.
answered Oct 1, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App