Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

True or False : The sum of coefficients of the two middle terms in the expansion of $(1+x)^{2n-1}$ is equal to $2n-1C_n$.

$\begin{array}{1 1}(A)\;\text{True}\\(B)\;\text{False}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • When n is odd,middle term $\Rightarrow (\large\frac{n+1}{2})^{th}$ and $(\large\frac{n+3}{2})^{th}$
Middle term $\Rightarrow \big(\large\frac{2n-1+1}{2}\big)^{th}$,$\big(\large\frac{2n-1+3}{2}\big)^{th}$
(i.e) $n^{th}$ and $(n+1)^{th}$ terms
$\Rightarrow 2n-1 C_{n-1} x^{n-1}$
$T_{n+1}=2n-1C_n(1) ^{(2n-1)-n}x^n$
$\Rightarrow 2n-1C_nx^n$
So the coefficient of two middle term in the expansion of $(1+x)^{2n-1}$ are $2n-1C_{n-1}$ and $2n-1C_n$
Sum of these coefficients
$\Rightarrow 2n-1C_{n-1}+2n-1C_n x^n$
$\Rightarrow (2n-1+1C_n)$
$\Rightarrow 2nC_n$
Hence the given statement is False.
answered Jun 25, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App