Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Find the mean deviation about the mean for data : $x_i :5,7,9,10,12,15 \qquad f_i : 8,6,2,2,2,6$

$\begin{array}{1 1}(A)\;3.23\\(B)\;3\\(C)\;2\\(D)\;7\end{array} $

Can you answer this question?

1 Answer

0 votes
Step 1:
$x_i =5,\qquad f_i=8, \qquad CF=8,\qquad |x_i -M|=|5-7|=2 \qquad f_i |x_i-M|=16$
$x_i =7,\qquad f_i=6, \qquad CF=14,\qquad |x_i -M|=|7-7|=0 \qquad f_i |x_i-M|=00$
$x_i =9,\qquad f_i=2, \qquad CF=16,\qquad |x_i -M|=|9-7|=2 \qquad f_i |x_i-M|=04$
$x_i =10,\qquad f_i=2, \qquad CF=18,\qquad |x_i -M|=|10-7|=3 \qquad f_i |x_i-M|=06$
$x_i =12,\qquad f_i=2, \qquad CF=20,\qquad |x_i -M|=|12-7|=5 \qquad f_i |x_i-M|=10$
$x_i =15,\qquad f_i=6, \qquad CF=26,\qquad |x_i -M|=|5-7|=8 \qquad f_i |x_i-M|=48$
Total $\sum f_i=26$
$\sum f_i |x_i -M|=84$
Here, $N= \sum f_i =26(even)$
Median $M= \large\frac{N/2 th \;observation+ (n/2+1) th \;observation}{2}$
$\qquad= \large\frac{26/2 th \;observation+ (26/2+1) th \;observation}{2}$
$\qquad= \large\frac{13th \;observation+14th\;observation}{2}$
$\qquad = \large\frac{7+7}{2}$
$\qquad= \frac{14}{2}$
$\qquad= 7$
Step 2:
Mean deviation about median $= \large\frac{\sum f_i |x_i-M|}{\sum f_i}=\frac{84}{26}$$=3.23$
Hence A is the correct answer.
answered Jun 25, 2014 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App