Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin\: x + \cos \: x}{\sqrt{\sin\: 2x}}$$ dx$

Can you answer this question?

1 Answer

0 votes
  • when f(x) is an integral function is substitute on t,then $f'(x)dx=dt.Hence\;\int f(x)dx=\int t.dt$
  • $\sin 2x=2\sin x \cos x$
  • $\int \large\frac{dx}{a^2-x^2}$$=\sin ^{-1}(x/a)+c$
  • if f(x) is an even function, then $\int \limits_{-1}^a f(x)dx=2\int \limits _0^a f(x)dx$
Step 1:
$I=\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin x+\cos x}{\sqrt{\sin2x}}$$dx$
But $\sin 2x=2\sin x\cos x$
$=\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin x+\cos x}{\sqrt{2\sin x \cos x}}$$dx$
Add and subtract 1 to the determinator,
$\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin x+\cos x}{\sqrt{1-1+2\sin x \cos x}}$$dx$
Step 2:
we can write this as
$\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin x+\cos x}{1-(1-2\sin x \cos x)}$$dx$
But $1=\sin ^2 x+\cos ^2x$
$\large\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin x+\cos x}{1-(\sin^2x+\cos ^2x-2\sin x \cos x)}$$dx$
$\sin ^2x+\cos ^2x-2\sin x \cos x=(\sin x-\cos x)^2$
Therefore $I=\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{\sin x+\cos x}{\sqrt {1-(\sin x \cos x)^2}}$$dx$
Step 3:
Let $\sin x-\cos x=t;$
on integrating w.r.t x we get,
$(\cos x+\sin x)dx=dt$
Now substituting t and dt we get
$I=\int\limits_{\Large\frac{\pi}{6}}^{\Large\frac{\pi}{3}}\large\frac{dt}{\sqrt {1-t^2}}$
But the limit also change when we substitute for t
When $x=\large\frac{\pi}{6}$$;\qquad \sin x-\cos x=t$
$=>\sin \pi/6-\cos \pi/6 =\frac{1-\sqrt 3}{2}=t$
Therefore $I=\int \limits_{\large\frac{-\sqrt 3-1}{2}}^{\large\frac{\sqrt 3-1}{2}} \large\frac{dt}{\sqrt {1-t^2}}$
Step 4:
This is the form of $\int \large\frac{dx}{\sqrt {a^2-x^2}}$$=2\sin ^{-1}(x/a)+c$
Hence $I=\int \limits_{\Large\frac{-\sqrt 3-1}{2}}^{\Large\frac{\sqrt 3-1}{2}} \large\frac{dt}{\sqrt {1-t^2}}$
If we replace 't' by -t, we get back.
$\sqrt {1-t^2},$
hence it is an even function
Therefore $I=2\int \limits_{\Large\frac{-\sqrt 3-1}{2}}^{\Large\frac{\sqrt 3-1}{2}} \large\frac{dt}{\sqrt {1-t^2}}$
On integrating we get
$2[\sin^{-1}t]_0^{\Large\frac{\sqrt 3-1}{2}}+c$
On applying limits,
$I=2 \bigg[\sin^{-1} (\frac{\sqrt 3-1}{2})-\sin ^{-1}(0)\bigg]+c$
But $\sin^{-1}(0)=0$
Therefore $ I=2 \sin^{-1}(\large\frac{\sqrt 3-1}{2})$$+c$
answered Sep 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App