Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

If the second ,third and fourth term in the expansion of $(x+a)^n$ and $240,720$ and $1080$ respectively,then the value of $n$ is

$\begin{array}{1 1}(A)\;15\\(B)\;20\\(C)\;10\\(D)\;5\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}=nC_r a^{n-r} b^r$
We have
Eliminating $x$ and $a$ we get
$\large\frac{(nC_1x^{n-1}a^1)(nC_3x^{n-3}a^3)}{(nC_2 x^{n-2} a^2)^2}=\frac{240\times 1080}{(720)^2}$
$\Rightarrow \large\frac{nC_1nC_3}{(nC_2)^2}=\frac{1}{2}$
$\Rightarrow n.\large\frac{n(n-1)(n-2)}{6}.\frac{2}{n(n-1)}.\frac{2}{n(n-1)}=\frac{1}{2}$
$\Rightarrow \large\frac{2(n-2)}{3(n-1)}=\frac{1}{2}$
$\Rightarrow 4n-8=3n-3$
$\Rightarrow n=5$
Hence (D) is the correct answer.
answered Jun 26, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App