Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int\large\frac{(3x-2)}{(x+1)^2(x+3)} $$dx$

Can you answer this question?

1 Answer

0 votes
  • Form of the rational function $\large\frac{px+q}{(x^2+a)(x^2+b)}$
  • Form of the partial function $\large\frac{Ax+B}{(x^2+a)}+\frac{Cx+D}{(x^2+b)}$
  • $\int\large\frac{dx}{x}$$=log|x|+c.$
Step 1:
Consider $\large\frac{3x-2}{(x+1)^2(x+3)}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x+3}$
$\Rightarrow (3x-2)=A(x+1)(x+3)+B(x+3)+C(x+1)^2$
$\Rightarrow A(x^2+4x+3)+B(x+3)+C(x^2+2x+1)$
Step 2:
Now compare the coefficient of like terms,
For $x^2 \quad A+C=0$
For $x \quad 4A+B+2C=3$
For the constant term $ \quad 3A+3B+C=-2$
Solving the above equations we get,
$A=\large\frac{11}{4}$$B=\large\frac{-5}{2}$ and $C=\large\frac{-11}{4}$
Step 3:
On integrating we get,
$I=\large\frac{11}{4}$$\log\mid x+1\mid+\large\frac{5}{2(x+1)}-\frac{11}{4}$$\log\mid x+3\mid+c$
$\Rightarrow \large\frac{11}{4}$$\log\bigg|\large\frac{x+1}{x+3}\bigg|+\frac{5}{2(x+1)}+c$
answered Sep 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App