logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

If the expansion of $(x^2+\large\frac{2}{x})^n$ for positive integer n has $13^{th}$ term independent of $x$ then n is

$\begin{array}{1 1}(A)\;16\\(B)\;18\\(C)\;20\\(D)\;\text{None of these}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $T_{r+1}=nC_r a^{n-r}b^r$
$T_{13}=T_{12+1}=nC_{12}(x^2)^{n-12}(\large\frac{2}{x})^{12}$
$\Rightarrow nC_{12} 2^{12} x^{2n-36}$
The term independent of $x$
$2n-36=0$
(i.e) $2n=36$
$n=18$
Hence (B) is the correct answer.
answered Jun 26, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...