Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Binomial Theorem
0 votes

If the coefficients of $x^2$ and $x^3$ in the expansion of $(3+kx)^9$ are equal then the value of $k$ is

$\begin{array}{1 1}(A)\;-\large\frac{9}{7}\\(B)\;\large\frac{9}{7}\\(C)\;\large\frac{7}{9}\\(D)\;\text{None of these}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $T_{r+1}=nC_ra^{n-r} b^r$
$T_{r+1}$ in $(3+kx)^9=9C_r 3^{9-r}(kx)^r$
$\Rightarrow 9C_r 3^{9-r}k^r x^r$
$\therefore $ Coefficient of $x^r=9C_r 3^{9-r} k^r$
Now coefficient of $x^2$=Coefficient of $x^3$
$\therefore 9C_23^{9-2}k^2=9C_33^{9-3}k^3$
$\Rightarrow 36\times 3^7 k^2=84\times 3^6k^3$
$\Rightarrow 36=28k$
$\Rightarrow k=\large\frac{9}{7}$
Hence (B) is the correct answer.
answered Jun 26, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App